Interleukin-3, GM-CSF, and TPA induce distinct phosphorylation events in an interleukin 3-dependent multipotential cell line.
نویسندگان
چکیده
The mechanism of action of the hemopoietic growth factor, murine interleukin-3 (mIL-3), was investigated using an mIL-3-dependent multipotential hematopoietic cell line, B6SUtA1. Murine granulocyte-macrophage colony-stimulating factor (mGM-CSF) was as potent as mIL-3 in stimulating these cells. In addition, sodium orthovanadate, an inhibitor of phosphotyrosine phosphatase, and 12-O-tetradecanoyl-phorbol-13-acetate (TPA), a known activator of protein kinase C, also stimulated DNA synthesis in these cells, suggesting that protein phosphorylation might be involved in the mechanism of action of mIL-3 and mGM-CSF. To assess this possibility, intact B6SUtA1 cells exposed for brief periods to mIL-3, mGM-CSF, and TPA were analyzed for changes in phosphorylation patterns using metabolic 32P-labeling and antibodies to phosphotyrosine. Both mIL-3 and mGM-CSF induced the serine-specific phosphorylation of a 68-Kd cytosolic protein, whereas all three agents stimulated the serine-specific phosphorylation of a 68-Kd membrane protein. Furthermore, mIL-3 stimulated tyrosine phosphorylation of the 68-Kd membrane protein, as well as of 140-, 90-, 55, and 40-Kd proteins. The 90-Kd protein was also tyrosine phosphorylated in response to mGM-CSF. These phosphotyrosine containing proteins were not detected in TPA-treated cells. These results indicate that protein phosphorylations on tyrosine and serine residues occur in B6SUtA1 cells following short-term incubation with mIL-3 or mGM-CSF and that most of these phosphorylation events are mediated by kinases other than protein kinase C (PkC).
منابع مشابه
Signal transduction of the human granulocyte-macrophage colony-stimulating factor and interleukin-3 receptors involves tyrosine phosphorylation of a common set of cytoplasmic proteins.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) exert multiple effects on the proliferation, differentiation, and function of myeloid lineage cells through their interaction with specific cell-surface receptors. There is a considerable degree of overlap in the biological effects of these two growth factors, but little is known about the mechanisms of pos...
متن کاملPhorbol 12-myristate 13-acetate inhibits granulocyte-macrophage colony stimulating factor-induced protein tyrosine phosphorylation in a human factor-dependent hematopoietic cell line.
The human myeloid cell line MO7 requires either granulocyte-macrophage colony stimulating factor (GM-CSF) or interleukin 3 (IL-3) for proliferation. We have previously shown that both GM-CSF and IL-3 transiently induce tyrosine phosphorylation of a number of proteins, including two cytosolic proteins, p93 and p70, which are maximally phosphorylated 5-15 min after addition of growth factor to fa...
متن کاملDifferent colony-stimulating factors are detected by the "interleukin-3"-dependent cell lines FDC-Pl and 32D cl-23.
The cell lines FDC-Pl and 32D cl-23 have previously been used as unique indicators for the growth-promoting activity of interleukin-3. We show that FDC-Pl cells respond to granulocyte/macrophage colony-stimulating factor (GM-CSF, CSF-2) as well as to interleukin-3. In keeping with this finding, FDC-Pl cells express the macrophage-specific marker, F4/80. FDC-Pl cells do not, however, respond to ...
متن کاملHematopoietic growth factors signal through the formation of reactive oxygen species.
Hematopoietic growth factors (HGFs) stimulate growth, differentiation, and prevent apoptosis of progenitor cells. Each growth factor has a specific cell surface receptor, which activates both unique and shared signal transduction pathways. We found that several HGFs, including granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), steel factor (SF), and thrombopoietin ...
متن کاملThe growth of Rauscher erythroleukemia cells is mediated by autocrine production of a factor with biological activity similar to interleukin-3.
Under serum-deprived and chemically defined culture conditions, the growth of Rauscher erythroleukemia cells is mediated by an autocrine mechanism. The growth-promoting activity is produced by fresh or irradiated cells and resembles the activity of interleukin-3 (IL-3) in its ability to sustain colony formation from three of four IL-3-dependent cell lines and to induce formation of granulocyte/...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 73 2 شماره
صفحات -
تاریخ انتشار 1989